Highest vectors of representations (total 3) ; the vectors are over the primal subalgebra. | \(g_{4}\) | \(g_{1}\) | \(g_{5}\) |
weight | \(\omega_{1}\) | \(\omega_{2}\) | \(\omega_{1}+\omega_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{\omega_{1}} \) → (1, 0) | \(\displaystyle V_{\omega_{2}} \) → (0, 1) | \(\displaystyle V_{\omega_{1}+\omega_{2}} \) → (1, 1) | |||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | |||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
|
| Semisimple subalgebra component.
| |||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{2}\) | \(\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | |||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{2}\) | \(\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | |||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{\omega_{1}}\oplus M_{-\omega_{1}+\omega_{2}}\oplus M_{-\omega_{2}}\) | \(\displaystyle M_{\omega_{2}}\oplus M_{\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | |||||||||||||||||
Isotypic character | \(\displaystyle M_{\omega_{1}}\oplus M_{-\omega_{1}+\omega_{2}}\oplus M_{-\omega_{2}}\) | \(\displaystyle M_{\omega_{2}}\oplus M_{\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) |